
J .  Fluid Me&. (1981), wol. 108, p p .  475-483 

Printzd in  Great Britain 

475 

Some vorticity theorems and conservation laws 
for non-barotropic fluids 

By S. D. MOBBS 
Department of Applied Mathematical Studies, University of Leeds, Leeds 1232 9JT 

and 
Geophysical Fluid Dynamics Laboratory, Meteorological Office, Bracknell, Berkshire RG 12 2 S Z  

(Received 8 September 1980) 

Some theorems concerning the vorticity in barotropic flows of perfect fluids are 
generalized for non-barotropic flows. The generalization involves replacing the velocity 
in certain parts of the equations by a time-dependent quantity which is a function of 
the velocity and thermodynamic properties of the fluid. Results which are generalized 
include Kelvin’s circulation theorem and conservation laws for potential vorticity 
and helicity. It is shown how the results can be further generalized to include dissipa- 
tive effects. The possibility of using some of the results in deriving a complete set of 
Lagrangian conservation laws for perfect fluids is discussed. 

1. Introduction 
There exists a number of theorems and conservation laws concerning the vorticity 

in barotropic perfect fluids. These include Kelvin’s circulation theorem, and conser- 
vation laws for potential vorticity and helicity. Eckart (1960) has found a generalized 
form of Kelvin’s circulation theorem which holds for a non-barotropic perfect fluid. 
It is shown in the present paper that this is a particular case of a generalization which 
can be applied to several vorticity theorems. 

We will use the following equations describing the flow of perfect fluids: the con- 
servation of momentum 

Du 
Dt 
-- - - V ( I  + @) + T V S ,  

the continuity equation 
Dp/Dt+pV.u = 0, 

and the conservation of entropy (which implies energy conservation in a perfect fluid) 

DSIDt = 0. (3) 

I n  the above equations u is the velocity field, p the density, S the specific entropy, I 
the specific enthalpy and @is the potential energy due to any conservative body forces. 
DIDt is the material derivative. It is assumed that the equation of state can be written 
in the form 

E = E(p ,S ) ,  (41 

where E is the specific internal energy. Hence all thermodynamic quantities can be 
expressed as functions of p and S. 
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It will be necessary to use a generalized form of Weber’s transformed equations of 
motion (Serrin 1959). These can be derived using only equations (1)-(3) and take the 
form 

u = V $ 5 + ~ V S + u o . V U ,  ( 5 )  

(6) _ -  D$ - 1 ‘2-I.-@, 
Dt 2q 

Da Du 
Dt ’ Dt 

- -  9- D t - T ,  o = O  - 0  

together with equation (3).  Equations (6) and ( 7 )  define $ and y respectively, while a 
are the Lagrange co-ordinates, uo is the initial velocity field of fluid particles and 
q 2  = U.U. 

We can now define a barotropic flow as one in which V?] x V S  = 0. Although in 
many flows this is equivalent to the usual requirement that V T  x V S  = 0, it is not 
clear whether this is always so. However, i t  will be shown later that Vy x V S  = 0 is 
in fact the most general form of the constraint which is necessary in order that many 
vorticity theorems such as Kelvin’s circulation theorem should hold. 

The generalization applied by Eckart to Kelvin’s circulation theorem involves 
replacing u in the result for barotropic fluids by (u -yVS) .  When applied to other 
vorticity theorems it is shown in this paper that u is replaced by (u - yVS) in some 
but not all of its occurrences in the relevant equations. If, instead, u is replaced by 
uo .Va ,  then the theorems still hold. In  the case of perfect fluids this generalization 
is equivalent to the first one, but the results now apply to fluids with dissipation. 

One of the theorems concerning the conservation of a generalized potential vorticity 
forms the basis of one or more of the conservation laws derived by Hollmann (1964) 
in an attempt to replace the complete set of thermodynamic and hydrodynamic 
equations for non-barotropic perfect fluids by five Lagrangian conservation laws. 
Some possible forms of this generalized potential vorticity are discussed with the view 
to obtaining a complete set of conservation laws. However, it is found that five inde- 
pendent conservation laws do not necessarily completely determine a flow. 

2. Generalization of Kelvin’s circulation theorem 

using a variational principal in Lagrangian co-ordinates: 
Eckart (1  960) obtained the following generalization of Kelvin’s circulation theorem, 

;j+yVS).dl= 0; 

C is a closed curve moving with the fluid but it need not be on an isentropic surface. 
If it is on such a surface, then equation (2) reduces to the usual result 

g fcu.dl = 0. 

In order to obtain equation (2) by more conventional means we begin with the 
identity (see Batchelor 1970 for a proof) 

(U-yVS) . (d l .V)u .  (12) D t  
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From the equation for entropy conservation (equation (3)) we have 

(13) 
D 
Dt 
-(VS) = - (VS.V)u-vxxw,  

where w = V x u is the vorticity. Using the equations of motion ( l ) ,  equations (7) 
t then follows from equation ( 12) and (13), and the identity u. (dl. V) u = +V(q2). dl, 

that  

ot $(u-yVx).dl= - [ V ( I + @ ) - ~ ( V S . V  u - yvs x 0 - +V(q2)] .dl 

- f c y V S .  (dl . V) u. (14) 

On applying the vector identity 

- v x .  ( d l .  V) u + (VX. 0) u .dl  = - ( V S  x w).dl, 

we can use Stokes' theorem to get the final result 

Starting with equation (16) and using the identities (13) and (15), it is easy to show 
that 

f c u . d l  = f C T d S ,  (17) 

which is Bjerknes' theorem. 

3. Generalizations of the Helmholtz theorems 

the following: 
The Helmholtz theorems concerning vortex tubes in barotropic perfect fluids are 

(if If  C, and C2 are any two circuits encircling a vortex tube in the same direction, 

then the circulation around C, u .dl is equal to the circulation around C,. 
b c ,  1 

(ii) Vortex lines are material lines. 
(iii) The strength of a vortex tube, defined as the circulation around any circuit 

encircling the tube, remains constant as the tube moves with the fluid. 
I n  a non-barotropic fluid none of these theorems hold so the concept of the strength 

of a vortex tube is not a useful one. However, it turns out that tubes of (w - Vy x V S )  
have all the properties of vortex tubes in barotropic fluids. 

Consider a segment of such a tube (figure 1). The circuits C, and C, encircling the 
tube enclose areas C, and C,. Using the vector identity 

we have 

V. (0- -VyxVS)  = 0, 

fi,V.("-VriXVS)dV = 0, 

where V is the volume of the segment. Then, because (w-Vq x V S )  is parallel to the 
surface of the volume everywhere on the surface except on its ends, the divergence 
theorem gives 

(19) (0 - 071 x V S )  .a, - (w - 09 x Y'S) .a, = 0. 

16-2 
s,. 
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w-vq x vs 

FIGURE 1 .  A segment of a tnhc of (0- Vv x VS) .  

Then by Stokes’ theorem 

(u - $78) .dl, = (u - yVS) .d12, (20) 
iC, i, 

i.e. the circulations around C, and C, are equal. This is a generalization of the first 
Helmholtz theorem. 

Consider a closed circuit C lying on a surface composed entirely of lines of 

( 0  - v y  x VS). 

The generalized circulation (u - y V S )  . dl is then zero. If the surface moves with the 

fluid carrying the line G with it then the generalized circulation will always be zero 
by the generalized circulation theorem. Therefore the surface will always consist of 
lines of (w - Vy x VS).  Two such moving surfaces must intersect along a line of 
(w - Vy x VS) so these lines are material lines. This is the generalization of the second 
Helmholtz theorem an& the proof is essentially that given by Lamb (1932) for the 
barotropic case. 

From the second generalized Helmholtz theorem and the generalized circulation 
theorem it  follows that the strength of a tube of (w - Vy x VS) is constant in time. 
This generalizes the third Helmholtz theorem. 

iQ 

4. An alternative form of the vorticity equation 
For a barotropic fluid the vorticity equation can be written in the form 

where p is the density. For a non-barotropic fluid this generalizes to 

- D (w-V; x ’78) = ( w - V ~  x V S  ) .Vu. nt P 
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To pr017e this we use the result 

D VyxVS VyxVX VT x V S  
Dt( p ) = (F)*vu+- P 

* -- (23) 

This follows by expanding the term on the left-hand side of (23) and using equation 
( 7 ) ,  the continuity equation (2) and the vector identity 

v s x ( v y . v ) u - v y x  ( v S . v ) u + v s x ( v y x W )  
-Vy x (VS x W )  = (VX x 07) V . U  - (VS x Vy) .VU. (24) 

Vazsonyi’s vorticity equation for a non-barotropic fluid is (see, for example, Serrin 
1959) ”(”) =w.vu+-.- .  VT x V S  

Dt P P P 
( 2 5 )  

Subtracting (23) from ( 2 5 )  gives the required result (22). 
Equation (21) integrates immediately (Serrin 1959) to  give 

(26) 
0 0 0  - = -.Grad x, 
P Po 

where w0 and po are the initial vorticity and density of fluid particles respectively, x 
is the position of a fluid particle and Grad = a/aa,, at (i = 1 , 2 , 3 )  being Lagrange co- 
ordinates. Equation (26) generalizes f m  a non-barotropic fluid to  

0 - v y x v s  
= 3. Grad x, 

P Po 
(27) 

if q is measured by integrating the temperature along trajectories from time t = 0. 

5. A generalized form of helicity which is conserved 

defined by 

the integral being over the whole volume of the fluid, is an invariant if w is everywhere 
parallel to the boundaries of the volume. Physically, H is non-zero only when the 
vortex lines are knotted. 

It has been shown by Moffatt (1969) that for a barotropic fluid the helicity, H ,  

H = Ju .wdV,  

For n non-barotropic fluid H is no longer constant. Consider 

D (--) U . W  = -.- DU w +u.”(”) . 
Dt p Dt p 

With use of equations (1) and (25) this becomes 

-- D (“.a) =-- T V 8 . o  V(I+@).w +u.(;.v)u+u.--. VT x V S  

Dt P f’ f’ P 

By means of the identity 

(see Batchelor 1970 for a proof) 
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for any scalar X ,  we have after a little manipulation 

at = / ( + q 2 - l - @ ) o . f i d C +  s T V S . o d V +  s u . V T x  V S d V ,  (30) 

where C is the surface of the volume V and fi is the unit vector normal to the surface. 
Clearly H can change even if o . ii = 0 on the boundaries. 

A generalized helicity which is constant in a non-barotropic fluid under appropriate 
conditions is (u - qVS) . (o - V q  x V S ) .  To see this we consider 

( u - ~ V S ) . ( O - V ~ X V S )  
Dt P 

The first term on the right-hand side has already been evaluated. The second term is 

which can be simplified using equations (1)  and (23). The third term simplifies to 

o.vs 

if Ertel’s potential vorticity theorem 

is used. After using the identity (29), equation (31) gives 

/(u - q v s )  . (o - v q  x vs) dv = (Qq2 - I - @) (6.1 - V y  x V S )  . f idC ,  (32) 
Dt s 

so the generalized helicity is invariant if (w - V q  x V S )  . fi is zero on the boundaries of 
the volume V .  

It is easy to show by considering discrete tubes of (o - V q  x V S )  that the generalized 
helicity is non-zero only if the lines of (o - V q  x V S )  are knotted. The proof for the 
barotropic case is given by Moffatt ( 1969) and the generalization to the non-barotropic 
case is straightforward. 

6. Generalization of potential vorticity 
Let h be a fluid property satisfying 

DhlDt = 0. (33) 

Then for a barotropic fluid, or if h is an equilibrium thermodynamic function, i.e. 
h = h(S,T) ,  

The quantity o. Vh/p  is the potential vorticity. If h is entropy, equation (34) is Ertel’s 
theorem. We will consider here a system rotating with constant angular velocity 51, 
in which case (34) becomes 

) = o .  D (o+252) .Vh -( Dt P (35) 
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For equation (35) to hold for a non-barotropic fluid h must be a function of S and T 
only. In the rotating co-ordinate system equation (25) becomes 

and equation (23) is unchanged, so, subtracting it from equation (36), we have 

) .vu. (37) 
D o + ~ Q - V ~ X V S  -( Dt P 

For any h satisfying (33) we have the identity 

).Vu]. (38) 

Using (37) and (38), we have finally 

expressing the conservation of generalized potential vorticity. 

(39) 

7. Extension of vorticity theorems to fluids with dissipation 
The results of §tj 2-6 relate to inviscid fluids; analogous results for viscous, thermally 

conducting fluids may be derived by using the generalization of Weber’s transformed 
equations of motion to non-barotropic perfect fluids (see Serrin 1959). This is 

Gradx. u - u, = q GradX+Grad #. (40) 
The quantities u,, # and 7 are defined in the introduction. Multiplying equation (40) 
by Grada gives equation ( 5 ) ,  i.e. 

u = V$+yVS+u,.Va, 

which can also be obtained as an Euler-Lagrange equation of an Eulerian variational 
principle for perfect fluids. From (5) we have 

(41 1 w-Vq x V S  = Vu, x Va.  

So for perfect fluids we obtain the following: 
(if  Generalized Kelvin’s circulation theorem 

where the surface C spans the closed curve C which moves with the fluid. 
(i i)  Generalized ‘ vorticity ’ equation 

(iii) Conservation of generalized potential vorticity 

= 0, 
Dt 

(43) 

(44) 
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for any h satisfying Dh/Dt = 0. This result is for inertial co-ordinates; the extension 
to include rotating co-ordinates is straightforward. 

(iv) Conservation of generalized helicity 

if (VU,  x Va).fi  is zero on the boundaries of V .  This is not exactly the same as (32) 
because we have used u,. Va instead of V$ + u,. Va. However the potential part of 
u makes no contribution to the helicity (see Moffatt 1969). 

All the above results can be proved directly using only equations (8) and (9), i.e. 

Duo Da 
Dt Dt 0, -=-= 

the continuity equation and several vector identities. Equations (8) and (9) hold even 
if viscous dissipation and heat conduction are present, so the above results (if-(iv) 
still hold in dissipative fluids. However, they are unlikely to be as useful as the results 
for non-dissipative fluids. 

8. Possibility of a complete set of conservation laws for perfect fluids 
Hollmann (1964) has attempt.ed to  derive a complete set of Lagrangian conservation 

laws to replace the five primitive equations for perfect fluids, i.e. three momentum 
equations, energy equation and continuity equation. We can express such a set of 
laws in the form 

D$i/Dt = 0,  i = 1 ,  ..., 5 .  (46) 

In an appendix Hollmann suggests the use of equations like (44) as one or more of 
such a set. An equation expressing the conservation of a generalized helicity density 
is also derived. However, it is by no means certain that five such conservation laws 
can entirely replace the usual equations, even if they are all independent. Often they 
will introduce extra variables needing extra equations to  determine them. An example 
of the use of five particular conservation laws given by Hollmann fallsinto this category. 
The five conserved quantities include potential temperature and Ertel’s potential 
vorticity. However, another variable, namely the 9 introduced in equation (6), enters 
the equations as an extra variable and so a sixth equation is needed to completely 
determine the flow. This sixth equation is not a Lagrangian conservation law. 

A similar procedure t o  Hollmann’s employs the generalized potential vorticity 
introduced in the present paper in four of the conserved quantities. Thus we could 
take 

$4 = s, 

$5 = Y 

(Vu, x Va)  . VS 
P 

with D+j/Dt = 0, i = 1,  ..., 5.  
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These conserved quantities can be shown to be independent and are simpler than 
Hollmann’s but, like his, they fail to determine the flow completely. A possible method 
of using them in a single step of a numerical scheme might be as follows. 

(i) Determine $i, i = 1 ,  ..., 5,  a t  time At (At small) from the initial conditions a t  
time t = 0. 

(ii) Use 
(iii) Using Vu, x Va and S ,  determine p from $5 .  

The thermodynamic state of the fluid is thus determined but not the velocity field. 
As in Hollmann’s case we need further equations to determine u; in this example two 
more are needed and these are equations (6) and (7), determining 9 and 7 respectively. 
These equations are not Lagrangian conservation laws. Having found 9 and 7, u 
could be evaluated without further integration using a generalization of the Weber 
transformation ( 5 )  given by Hollmann. 

However, i t  remains possible that, with suitable choices of h in equation (44), a 
complete set of Lagrangian conservation laws could be found. 

$z and $3 to determine the components of Vu, x Va. 

9. Conclusions 
A number of theorems involving the vorticity in a barotropic perfect fluid have been 

extended so as to apply to non-barotropic fluids. This is achieved by replacing the 
velocity u by (u - yVS) in some, but not all, of its occurrences in the relevant equations. 
It has been shown that the Weber transformation can lead to  forms of these generali- 
zations which are still valid when dissipation is present. The possibility arises of using 
a form of generalized potential vortieity in one or more of a complete set of conserva- 
tion laws for perfect non-barotropic fluids. However, no such complete set has yet 
been found. 
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